18 research outputs found

    Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers.

    Get PDF
    Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.Comment: 10 pages, 8 figures, ISMAR 202

    ReconViguRation: Reconfiguring Physical Keyboards in Virtual Reality.

    Get PDF
    Physical keyboards are common peripherals for personal computers and are efficient standard text entry devices. Recent research has investigated how physical keyboards can be used in immersive head-mounted display-based Virtual Reality (VR). So far, the physical layout of keyboards has typically been transplanted into VR for replicating typing experiences in a standard desktop environment. In this paper, we explore how to fully leverage the immersiveness of VR to change the input and output characteristics of physical keyboard interaction within a VR environment. This allows individual physical keys to be reconfigured to the same or different actions and visual output to be distributed in various ways across the VR representation of the keyboard. We explore a set of input and output mappings for reconfiguring the virtual presentation of physical keyboards and probe the resulting design space by specifically designing, implementing and evaluating nine VR-relevant applications: emojis, languages and special characters, application shortcuts, virtual text processing macros, a window manager, a photo browser, a whack-a-mole game, secure password entry and a virtual touch bar. We investigate the feasibility of the applications in a user study with 20 participants and find that, among other things, they are usable in VR. We discuss the limitations and possibilities of remapping the input and output characteristics of physical keyboards in VR based on empirical findings and analysis and suggest future research directions in this area

    Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Up-regulation of vascular endothelin type B (ET<sub>B</sub>) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, <it>ex vivo</it>, in detail delineation of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ET<sub>B </sub>receptors in human internal mammary arteries.</p> <p>Methods</p> <p>Human internal mammary arteries were obtained during coronary artery bypass graft surgery and were studied before and after 24 hours of organ culture, using <it>in vitro </it>pharmacology, real time PCR and Western blot techniques. Sarafotoxin 6c and endothelin-1 were used to examine the endothelin ET<sub>A </sub>and ET<sub>B </sub>receptor effects, respectively. The involvement of PKC and MAPK in the endothelin receptor regulation was examined by culture in the presence of antagonists.</p> <p>Results</p> <p>The endohtelin-1-induced contraction (after endothelin ET<sub>B </sub>receptor desensitization) and the endothelin ET<sub>A </sub>receptor mRNA expression levels were not altered by culture. The sarafotoxin 6c contraction, endothelin ET<sub>B </sub>receptor protein and mRNA expression levels were increased after organ culture. This increase was antagonized by; (1) PKC inhibitors (10 μM bisindolylmaleimide I and 10 μM Ro-32-0432), and (2) inhibitors of the p38, extracellular signal related kinases 1 and 2 (ERK1/2) and C-jun terminal kinase (JNK) MAPK pathways (10 μM SB203580, 10 μM PD98059 and 10 μM SP600125, respectively).</p> <p>Conclusion</p> <p>In conclusion, PKC and MAPK seem to be involved in the up-regulation of endothelin ET<sub>B </sub>receptor expression in human internal mammary arteries. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the development of vascular endothelin ET<sub>B </sub>receptor changes in cardiovascular disease.</p

    Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints

    No full text
    OBJECTIVE—To determine the levels of vascular endothelial growth factor (VEGF) mRNA and protein expression in normal and osteoarthritic (OA) human articular cartilage, and whether VEGF expression alters during the progression of OA.
METHODS—Sections from normal and OA human knee cartilage were immunotained with a polyclonal antibody recognising VEGF. In addition, total RNA was isolated from normal and osteoarthritic human knee cartilage and analysed by reverse transcriptase-polymerase chain reaction (RT-PCR) for VEGF mRNA expression.
RESULTS—VEGF was found to be present in normal and OA human knee cartilage in all cartilage layers. A significant increase of VEGF immunopositive chondrocytes to up to ~82% was detected in severe OA cartilage compared with normal articular cartilage (~56% of immunopositive chondrocytes). RT-PCR analysis showed the expression of VEGF also on the mRNA level.
CONCLUSIONS—VEGF is expressed by articular chondrocytes in normal and OA human knee cartilage. The percentage of VEGF immunopositive chondrocytes significantly increases in late stages of the disease. The VEGF transcript levels encoding all four isoforms shows a big variability in samples from different donors, suggesting a distinct regulation of the expression of the four VEGF isoforms in normal and OA cartilage.


    Pen-based Interaction with Spreadsheets in Mobile Virtual Reality

    No full text
    Virtual Reality (VR) can enhance the display and interaction of mobile knowledge work and in particular, spreadsheet applications. While spreadsheets are widely used yet are challenging to interact with, especially on mobile devices, using them in VR has not been explored in depth. A special uniqueness of the domain is the contrast between the immersive and large display space afforded by VR, contrasted by the very limited interaction space that may be afforded for the information worker on the go, such as an airplane seat or a small work-space. To close this gap, we present a tool-set for enhancing spreadsheet interaction on tablets using immersive VR headsets and pen-based input. This combination opens up many possibilities for enhancing the productivity for spreadsheet interaction. We propose to use the space around and in front of the tablet for enhanced visualization of spreadsheet data and meta-data. For example, extending sheet display beyond the bounds of the physical screen, or easier debugging by uncovering hidden dependencies between sheet's cells. Combining the precise on-screen input of a pen with spatial sensing around the tablet, we propose tools for the efficient creation and editing of spreadsheets functions such as off-the-screen layered menus, visualization of sheets dependencies, and gaze-and-touch-based switching between spreadsheet tabs. We study the feasibility of the proposed tool-set using a video-based online survey and an expert-based assessment of indicative human performance potential

    Pen-based Interaction with Spreadsheets in Mobile Virtual Reality

    No full text
    Virtual Reality (VR) can enhance the display and interaction of mobile knowledge work and in particular, spreadsheet applications. While spreadsheets are widely used yet are challenging to interact with, especially on mobile devices, using them in VR has not been explored in depth. A special uniqueness of the domain is the contrast between the immersive and large display space afforded by VR, contrasted by the very limited interaction space that may be afforded for the information worker on the go, such as an airplane seat or a small work-space. To close this gap, we present a tool-set for enhancing spreadsheet interaction on tablets using immersive VR headsets and pen-based input. This combination opens up many possibilities for enhancing the productivity for spreadsheet interaction. We propose to use the space around and in front of the tablet for enhanced visualization of spreadsheet data and meta-data. For example, extending sheet display beyond the bounds of the physical screen, or easier debugging by uncovering hidden dependencies between sheet's cells. Combining the precise on-screen input of a pen with spatial sensing around the tablet, we propose tools for the efficient creation and editing of spreadsheets functions such as off-the-screen layered menus, visualization of sheets dependencies, and gaze-and-touch-based switching between spreadsheet tabs. We study the feasibility of the proposed tool-set using a video-based online survey and an expert-based assessment of indicative human performance potential

    Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers

    No full text
    Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications
    corecore